Generating Sentences from Semantic Vector Space Representations
نویسندگان
چکیده
The first work of this kind in a monolingual setting successfully generates two and threeword phrases with predetermined syntactic structures by decoupling the task into three phases: synthesis, decomposition, and search [4]. During the synthesis phase, a vector is constructed from some input text. This vector is decomposed into multiple output vectors that are then matched to words in the vocabulary using a nearest-neighbor search.
منابع مشابه
Vector Space Modelling of Natural Language
Vector space modelling of words has been a focus of research in the field of computational linguistics over the past decade. Aim of Vector Space Models is to project the words in a text corpus onto a vector space, such that the semantically similar words lie close together in the vector space (also called, semantic space). Recently, the research focus has shifted towards semantic compositionali...
متن کاملOrthogonality and Orthography: Introducing Measured Distance into Semantic Space
This paper explores a new technique for encoding structured information into a semantic model, for the construction of vector representations of words and sentences. As an illustrative application, we use this technique to compose robust representations of words based on sequences of letters, that are tolerant to changes such as transposition, insertion and deletion of characters. Since these v...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملNon-Linear Similarity Learning for Compositionality
Many NLP applications rely on the existence of similarity measures over text data. Although word vector space models provide good similarity measures between words, phrasal and sentential similarities derived from composition of individual words remain as a difficult problem. In this paper, we propose a new method of of non-linear similarity learning for semantic compositionality. In this metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014